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EFFECTIVE RESULTS ON LINEAR DEPENDENCE

FOR ELLIPTIC CURVES

MIN SHA AND IGOR E. SHPARLINSKI

Abstract. Given a subgroup Γ of rational points on an elliptic
curve E over Q of rank r ≥ 1 and a sufficiently large real x ≥ 2,
suppose that the rank of Γ is less than r, then we give unconditional
and conditional upper and lower bounds on the canonical height
of a rational point Q which is not in the group Γ but belongs to
the reduction of Γ modulo every prime p ≤ x of good reduction.

1. Introduction

1.1. Background and motivation. Let A be an Abelian variety de-
fined over a number field F , and let Λ be a subgroup of the Mordell-Weil
group A(F ). For any prime p (of F ) of good reduction, we denote by
Λp the image of Λ via the reduction map modulo p, and Fp stands for
the residue field of F modulo p. The following question was initiated in
2002 and was considered at the same time but independently by Gajda
(in a letter to Kenneth Ribet in 2002, see [9]) and Kowalski [15], and
it is now called detecting linear dependence.

Question 1. Suppose that P is a point of A(F ) such that for all but
finitely many primes p of F , as a point in A(Fp), we have P ∈ Λp.
Does it then follow that P ∈ Λ?

An early result related to this question is due to Schinzel [26], who
has answered affirmatively the question for the multiplicative group in
place of an Abelian variety. Question 1 has been extensively studied in
recent years and much progress has been made; see [5, 6, 7, 9, 12, 13,
20, 23, 31] for more details and developments. For example, Kowal-
ski [15] has shown that the property in Question 1 holds for an elliptic
curve and a cyclic subgroup, and Banaszak, Gajda and Krasoń [6]
have established such a property for elliptic curves without complex
multiplications and a finitely generated free subgroup. In particular,
Jossen [12] has given an affirmative answer when A is a simple Abelian
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variety, which automatically includes elliptic curves, in a stronger form
that we only need “for a set of primes p with natural density 1” instead
of “for all but finitely many primes p”. We remark that the answer of
Question 1 is not always positive; see [13] for a counterexample.
Here, motivated by Question 1 and in some sense, we introduce and

study its counterpart, called pseudolinear dependence, in the case of
elliptic curves. Following the set up of [1], which is crucial for some of
our approaches, we restrict ourselves to the case of elliptic curves over
the rational numbers, see Definitions 2 and 3 below. There is little
doubt that one can extend [1], and thus our results to elliptic curves
over number fields, but this may require quite significant efforts. A
result of Banaszak and Krasoń [7, Theorem 7.7] replaces the condition
of linear dependence modulo all but finitely many primes by the linear
dependence modulo a finite set of primes depending on all the initial
data (including the point P ), and then recently Sadek [23] has given
an explicit upper bound of such primes in the set for a specific class
of elliptic curves under the Generalised Riemann Hypothesis (GRH).
In fact, all results that are based on the Chebotarev Density Theorem
involve only a finite set of primes depending on the initial data; see
also [9]. Here, using some new ideas, we show that any set of primes
that detects the linear dependence should contain large primes; see
Theorems 4, 5 and 6 below for more details.
We first fix some notation.
Let E be an elliptic curve over Q of rank r and of discriminant ∆E .

We denote by E(Q) the Mordell-Weil group of rational points on E.
We also let Γ be a subgroup of E(Q) with rank s. We refer to [29] for
a background on elliptic curves.
Similarly, for a prime p of good reduction (that is, p ∤ ∆E), we let

E(Fp) be the group of Fp-points in the reduction of E to the finite field
Fp of p elements.
We also denote by Γp the reduction of Γ modulo p, which is a sub-

group of E(Fp). In particular, E(Q)p stands for the reduction of E(Q)
modulo p.

Definition 2 (Fp-pseudolinear dependence). Given a prime p of good
reduction, we call a point Q ∈ E(Q) an Fp-pseudolinearly dependent
point of Γ if Q 6∈ Γ but as a point in E(Fp) we have Q ∈ Γp.

We remark that the Fp-pseudolinear dependence equivalently means
that such a point Q 6∈ Γ but Q ∈ Γ + kerp, where kerp denotes the
kernel of the reduction map modulo p.

Definition 3 (x-pseudolinear dependence). We say that a point Q ∈
E(Q) is an x-pseudolinearly dependent point of Γ if Q 6∈ Γ but it is



LINEAR DEPENDENCE FOR ELLIPTIC CURVES 3

an Fp-pseudolinearly dependent point of Γ for all primes p ≤ x of good
reduction.

In particular, if Γ is generated by a point P , we also say that such a
point Q is an x-pseudomultiple of P . This notion is an elliptic analogue
of the notions of x-pseudosquares and x-pseudopowers over the integers,
which dates back to the classical results of Schinzel [24, 25, 27] and has
recently been studied in [3, 8, 14, 21].
In this paper, we explicitly construct such an x-pseudolinearly de-

pendent point Q of Γ provided that s < r and give upper bounds for its
canonical height, and then we also deduce lower bounds for the height
of any x-pseudolinearly dependent point in some special cases.
More detailedly, we first briefly consider the existence problem of x-

pseudolinearly dependent points. Further, essentially using a result of
Gupta and Murty [10, Lemma 14], we obtain an unconditional upper
bound on the height of an x-pseudolinearly dependent point of Γ if s <
r. Then, using a result of Akbary, Ghioca and Murty [1, Theorem 1.2]
and under GRH we obtain a stronger conditional upper bound provided
that s ≥ 19 if E is a non-CM curve, or s ≥ 7 if E is a CM curve. In
addition, following some detailed theory on the number fields generated
by some points of E and applying the effective Chebotarev Density
Theorem, we establish unconditional and conditional lower bounds for
the height of such points in some special cases.
In the last section, we pose some problems which may merit further

study.

1.2. General notation. Throughout the paper, we use the Landau
symbols O and o and the Vinogradov symbol ≪ (sometimes written
as ≫). We recall that the assertions U = O(V ) and U ≪ V are both
equivalent to the inequality |U | ≤ cV with some absolute constant c,
while U = o(V ) means that U/V → 0. In this paper, the constants
implied in the symbols O and ≪ depend only possibly on E and Γ.
The letter p, with or without subscripts, always denotes a prime. As

usual, π(x) denotes the number of primes not exceeding x.

We use ĥ to denote the canonical height of points on E, see Sec-
tion 3.2 for a precise definition. For a finite set S, we use #S to denote
its cardinality.

1.3. Main results. Here, we let E be an elliptic curve of rank r defined
over Q, and Γ a subgroup of E(Q) with rank s.
We first state several upper bounds for the height of pseudolinearly

dependent points.
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Theorem 4. Suppose that r ≥ 1 and s = 0. Then for a sufficiently
large x, there is a rational point Q ∈ E(Q) of height

ĥ(Q) ≤ exp

(
2x− 2 log(#Γ)

x

log x
+O(x/(log x)2)

)

such that Q is an x-pseudolinearly dependent point of Γ.

Theorem 5. Assume that r ≥ 2 and 1 ≤ s < r. Then for a sufficiently
large x, there is a rational point Q ∈ E(Q) of height

ĥ(Q) ≤ exp

(
4

s+ 2
x+O(x/ log x)

)

such that Q is an x-pseudolinearly dependent point of Γ.

Theorem 6. Suppose that either 19 ≤ s < r if E is a non-CM curve,
or 7 ≤ s < r if E is a CM curve. Then under GRH and for a suffi-
ciently large x, there is a rational point Q ∈ E(Q) of height

ĥ(Q) ≤ exp (4x(log log x)/ log x+O(x/ log x))

such that Q is an x-pseudolinearly dependent point of Γ.

Notice that by Definition 3 the condition for x-pseudolinearly de-
pendent points of Γ is quite strong when x tends to infinity. This
convinces us that there maybe exist some lower bounds for the height
of such points. Here, we establish some partial results.

Theorem 7. Suppose that r ≥ 1 and s = 0. Then for any sufficiently
large x and any x-pseudolinearly dependent point Q of Γ, we have

ĥ(Q) ≥ 1

#Γ
x/ log x+O(x/(log x)2).

Theorem 8. Assume that r ≥ 2, 1 ≤ s < r, and Γ is a free subgroup
of E(Q). Then for any sufficiently large x and any x-pseudolinearly
dependent point Q of Γ, we have

ĥ(Q) ≥ exp
(
(log x)1/(2s+6)+o(1)

)
;

and furthermore assuming GRH, we have

ĥ(Q) ≥ exp
(
x1/(4s+12)+o(1)

)
.

2. Preliminaries

2.1. Jossen’s result. We want to highlight the following result which
is implied in the main theorem of Jossen [12]. As mentioned before,
the original result is about simple Abelian varieties over number fields.
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Lemma 9. Let E be an elliptic curve over Q, and let Γ be a subgroup
of E(Q) and Q ∈ E(Q) a rational point. If the set of primes p for
which Q ∈ Γp has asymptotic natural density 1, then Q ∈ Γ.

2.2. Heights on elliptic curves. We recall briefly the definitions and
relation of the Weil height and the canonical height of points in E(Q);
see [29, Chapter VIII, Section 9] for more details.
For a point P = (x, y) ∈ E(Q) with x = a/b, a and b are coprime

integers, we define the Weil height of P as

h(P ) = logmax{|a|, |b|},
and the canonical height of P is defined as

ĥ(P ) = lim
n→+∞

h(2nP )

4n
.

These two heights are related by the following:

ĥ(P ) = h(P ) +O(1),

where the implied constant depends only on E. In addition, for any
P ∈ E(Q) and m ∈ Z, we have

ĥ(mP ) = m2ĥ(P );

furthermore, ĥ(P ) = 0 if and only if P is a torsion point.

2.3. Two useful facts about elliptic curves. First, for any prime
p of good reduction, the reduction map modulo p from E(Q) to E(Fp)
is injective when restricted to the torsion subgroup; see [29, Chap-
ter VII, Proposition 3.1]. Hence, if E(Q) has rank 0, then there is
no Fp-pseudolinear dependence, and thus there is no x-pseudolinear
dependence in E(Q).
Second, every rational point P in E(Q) has a representation of the

form

(1) P =
(m
k2

,
n

k3

)
,

where m,n and k are integers with k ≥ 1 and gcd(m, k) = gcd(n, k) =
1; see [30, page 68]. So, for any prime p of good reduction, P ≡ OE

modulo p if and only if p | k. In particular, given a point P ∈ E(Q),
there are only finitely many primes p such that P ≡ OE modulo p.
From the above fact, it is easy to see that if E(Q) 6= {OE}, then

there are at most finitely many primes p of good reduction such that
E(Q)p = {OE}. This let our definitions and considerations make sense.
Indeed, if E(Q) has more than one torsion point, then by the injec-

tivity of the reduction map restricted to the torsion subgroup, we know
that E(Q)p 6= {OE} for any prime p of good reduction. Otherwise if
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E(Q) is a free abelian group of rank r generated by P1, . . . , Pr, then
by the above discussion there exists a prime ℓ such that for any prime
p > ℓ of good reduction, at least one Pi (1 ≤ i ≤ r) satisfies Pi 6≡ OE

modulo p, that is E(Q)p 6= {OE}.

2.4. Number fields derived from elliptic curves. Following [1,
10, 19], we recall some basic facts about the number fields generated
by division points and points of infinite order on E. Here, we should
assume that E(Q) is of rank r ≥ 1.
Let ℓ be a prime, and P1, P2, . . . , Pn ∈ E(Q) independent points of

infinite order on E. Consider the number field

L = Q(E[ℓ], ℓ−1P1, . . . , ℓ
−1Pn),

where E[ℓ] is the set of ℓ-torsion points on E, and each ℓ−1Pi (1 ≤ i ≤
n) is a fixed point whose multiplication by ℓ is the point Pi. Moreover,
we denote K = Q(E[ℓ]) and Ki = Q(E[ℓ], ℓ−1Pi) for every 1 ≤ i ≤ n.
Now, both the extensions K/Q and L/Q are Galois extensions. For

the Galois groups, Gal(K/Q) is a subgroup of GL2(Fℓ), Gal(L/K) is
a subgroup of E[ℓ]n, and Gal(L/Q) is a subgroup of the semi-direct
product

GL2(Fℓ)⋉ E[ℓ]n,

which implies that for any i 6= j with 1 ≤ i, j ≤ n, we haveKi∩Kj = K.
In particular, we have

(2) [K : Q] < ℓ4 and [L : K] ≤ ℓ2n.

Furthermore, Ribet [22] has shown that for sufficiently large ℓ, the
Galois group Gal(L/K) is isomorphic to E[ℓ]n via the map

(ℓ−1P1, . . . , ℓ
−1Pn) 7→ (ℓ−1P1 + A1, . . . , ℓ

−1Pn + An),

where (A1, . . . , An) ∈ E[ℓ]n and assuming that E is a CM curve. If E is
a non-CM curve, it is still true by the theorems of Bachmakov (see [4]
or [18, Chapter V, Theorem 5.2]).
In addition, the primes which ramify in the extension L/Q are ex-

actly those primes dividing ℓ∆E.
Now, fix a number field Ki with 1 ≤ i ≤ n, note that every rational

point P in E(Ki) has a homogeneous coordinates of the form [x, y, z]
with x, y, z ∈ OKi

and at least one of x, y, z in O∗
Ki
, where OKi

is the
ring of integers and O∗

Ki
is its group of units. Pick a prime p ∤ ℓ∆E

which splits completely in K, let pi be a prime ideal of OKi
above p.

Then, the reduction map modulo pi is defined by

E(Ki) → E(OKi
/pi), P = [x, y, z] 7→ [x, y, z] mod pi.
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So, by the construction of Ki and noticing the choice of p, the equation

(3) ℓX = Pi

has a solution in E(Fp), where X is an unknown, if and only if [OKi
/pi :

Fp] = 1, that is p splits completely in Ki.
In particular, if we indeed have some Ki such that Ki 6= K, then

by the above discussion we can choose a conjugation class C in the
Galois group Gal(L/Q) such that each of its corresponding primes p
is unramified in L/Q, p is a prime of good reduction, every σ ∈ C is
the identity map when restricted to K, and p splits completely in some
fields Ki but it does not split completely in the other fields Kj with
j 6= i (these corresponding fields must not be trivial extensions of K),
which means that for some points Pi the equation (3) has a solution in
E(Fp) but for the others there is no such solution.

2.5. The Chebotarev Density Theorem. For the convenience of
the reader, we restate two useful results as follows. The first one is due
to Hensel, see [28, Proposition 6]; while the second is about the least
prime ideal in the Chebotarev Density Theorem, see [16, 17].

Lemma 10. Let L/Q be a Galois extension of degree n and ramified
only at the primes p1, . . . , pm. Then, we have

log |DL| ≤ n logn + n

m∑

i=1

log pi,

where DL is the discriminant of L/Q.

Lemma 11. There exists an effectively computable positive absolute
constant c1 such that for any number field K, any finite Galois ex-
tension L/K and any conjugacy class C of Gal(L/K), there exists a
prime ideal p of K which is unramified in L, for which the Artin sym-

bol
[
L/K
p

]
= C and the norm NK/Q(p) is a rational prime, and which

satisfies the bound

NK/Q(p) ≤ 2|DL|c1;
furthermore, under GRH, there is an effectively computable absolute
constant c2 such that

NK/Q(p) ≤ c2(log |DL|)2.

3. The Existence and Construction of x-Pseudolinearly
Dependent Points
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3.1. Cases of existence and non-existence. Before proving our
main results, we want to first consider the existence problem of pseu-
dolinearly dependent points. In this section, E is a fixed elliptic curve
of rank r over Q, and Γ is a fixed subgroup of E(Q) with rank s.
If the ranks of E and Γ satisfy s < r, then x-pseudolinearly depen-

dent points of Γ do exist. Indeed, since s < r, we can take a point
R ∈ E(Q) of infinite order such that 〈R〉 ∩Γ = {OE}, where OE is the
point at infinity of E. Pick an arbitrary point P ∈ Γ, it is easy to see
that the following point

(4) Q = P + lcm {#E(Q)p/#Γp : p ≤ x of good reduction}R,

where, as usual, “lcm ” means the least common multiple, is an x-
pseudolinearly dependent point of Γ for any sufficiently large x > 0
(that is, there exists at least one prime of good reduction not greater
than x).
In the construction (4), we can see that 〈Q〉 ∩ Γ = {OE}. Actually,

when x is sufficiently large, any x-pseudolinearly dependent point of Γ
must satisfy this property.

Proposition 12. There exists a sufficiently large constant M depend-
ing on E and Γ such that for any x > M , every x-pseudolinearly
dependent point Q of Γ satisfies 〈Q〉 ∩ Γ = {OE}.
Proof. Consider the subgroup

Γ̃ = {P ∈ E(Q) : mP ∈ Γ for some m ∈ Z}.
Notice that Γ̃ is also a finitely generated group, and by construction
each element in the quotient group Γ̃/Γ is of finite order. So, Γ̃/Γ is a

finite group. Then, we let n = [Γ̃ : Γ] and assume that Γ̃/Γ = {P0 =
OE, P1, . . . , Pn−1}. If n = 1, then everything is done. Now, we assume
that n > 1.
For any Pi, 1 ≤ i ≤ n − 1, since Pi 6∈ Γ, by Lemma 9 there exists

a prime pi of good reduction such that Pi 6∈ Γpi. Then, we choose a
constant, say M , such that M ≥ pi for any 1 ≤ i ≤ n− 1. Thus, when
x > M , any Pi (1 ≤ i ≤ n − 1) is not an x-pseudolinearly dependent

point of Γ, and then any point P ∈ Γ̃ is also not such a point. This in
fact completes the proof. �

The following result says that the case (that is s < r) in (4) is the
only one meaningful case for x-pseudolinearly dependent points when
x is sufficiently large.

Proposition 13. If Γ is a full rank subgroup of E(Q) (that is s = r),
then there exists a constant M depending on E and Γ such that for any
x > M , there is no x-pseudolinearly dependent point of Γ.
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Proof. Since Γ is of full rank, the index [E(Q) : Γ] is finite. Let
n = [E(Q) : Γ]. We can assume that n > 1. Now, we suppose that
E(Q)/Γ = {P0 = OE, P1, · · · , Pn−1}. So, Pi 6∈ Γ for any 1 ≤ i ≤ n− 1.
For any Pi (1 ≤ i ≤ n − 1), since Pi 6∈ Γ, by Lemma 9 there exists

a prime pi of good reduction such that Pi 6∈ Γpi. Then, we choose a
constant, say M , such that M ≥ pi for any 1 ≤ i ≤ n− 1.
Pick an arbitrary point Q ∈ E(Q) \ Γ, then there is exactly one Pi

(1 ≤ i ≤ n − 1) such that Q− Pi ∈ Γ. By the choice of pi, we deduce
that Q 6∈ Γpi. Thus, Q is not an x-pseudolinearly dependent point of
Γ for any x > M . �

We remark that directly by Lemma 9, any given point in E(Q) is
not an x-pseudolinearly dependent point of Γ for x sufficiently large.
Note that E(Q) has finitely many torsion points, so by choosing large
enough x, none of the torsion points in E(Q) is an x-pseudolinearly
dependent point of Γ.
As an example, we present the following explicit result. Note that

by definition, if a point in E(Q) is not an Fp-pseudolinearly dependent
point of Γ, then it is not an x-pseudolinearly dependent point of Γ for
any x ≥ p.

Proposition 14. Suppose that E(Q) is of rank 1 and E(Q) = 〈P 〉. Fix
a prime p of good reduction, let m be a positive divisor of #E(Q)p, and
set Γ = 〈mP 〉. Then, there is no Fp-pseudolinearly dependent point of
Γ.

Proof. If m = 1, then nothing needs to be done. Now we assume that
m > 1.
Suppose that there exists a rational point Q = nP ∈ E(Q) such

that Q 6∈ Γ but Q ∈ Γp, that is Q is an Fp-pseudolinearly dependent
point of Γ. Then, we have m ∤ n, and Q ≡ kmP modulo p for some
integer k. Thus, we have (km − n)P ≡ OE modulo p. Then, noticing
the choice of m, we must have m | (km− n), and so m | n. This leads
to a contradiction. So, there is no such point Q, and the desired result
follows. �

3.2. Construction. In the sequel, E is a fixed elliptic curve of rank
r ≥ 1 over Q, and Γ is a given subgroup of E(Q) with rank s < r.
In order to get upper bounds on the height of pseudolinearly depen-

dent points, the following construction is slightly different from what
we give in Section 3.1.
For any prime p of good reduction related to E, we let

Np = #E(Fp) and Tp = #Γp,
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and set Np = Tp = 1 for all other primes p. Given a sufficiently large
x > 0 (at least one prime of good reduction is not greater than x), we
also define

Lx = lcm {Np/Tp : p ≤ x}.
Take a point R ∈ E(Q) of infinite order such that 〈R〉 ∩ Γ = {OE},

then pick an arbitrary point P ∈ Γ and set

Q = P + LxR.

It is easy to see that Q 6∈ Γ but as a point in E(Fp), Q ∈ Γp for every
prime p ≤ x of good reduction.
Since the coordinates of points in E(Q) are rational numbers, for

any subset S ⊆ E(Q) there exists a point with the smallest Weil height
among all the points in S. So, noticing s < r, we choose a point with
smallest Weil height in the subset consisting of non-torsion points R in
E(Q) \ Γ with 〈R〉 ∩ Γ = {OE}, we denote this point by Rmin. Thus,
h(Rmin) is fixed if E and Γ are given.
Now, we define a point Qmin ∈ E(Q) as follows:

(5) Qmin = LxRmin.

As before, Qmin 6∈ Γ but Qmin ∈ Γp for every prime p ≤ x of good
reduction. We also have

(6) ĥ(Qmin) = L2
xĥ(Rmin) = L2

x(h(Rmin) +O(1)) ≪ L2
x,

which comes from the fact that h(Rmin) is fixed when E and Γ are
given.
Finally, we want to give a trivial upper bound for ĥ(Qmin), which

can be viewed as a comparison of our main results.
Recalling the Hasse bound

|Np − p− 1| ≤ 2p1/2

for any prime p of good reduction (see [29, Chapter V, Theorem 1.1]),
we derive the inequality

∏

p≤x

Np ≤
∏

p≤x

(p+ 2p1/2 + 1) =
∏

p≤x

p(1 + p−1/2)2

= exp

(
∑

p≤x

log p + 2
∑

p≤x

log(1 + p−1/2)

)

≤ exp

(
∑

p≤x

log p+ 2
∑

p≤x

p−1/2

)

= exp
(
O
(√

x/ log x
))∏

p≤x

p.

(7)
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Now using the prime number theorem with the currently best known
error term:

(8)
∑

p≤x

log p = x+O
(
x exp

(
−c(log x)3/5(log log x)−1/5

))

with x ≥ 3 and some absolute constant c > 0, see [11, Corollary 8.30],
we obtain

(9)
∏

p≤x

Np ≤ exp
(
x+O

(
x exp

(
−c(log x)3/5(log log x)−1/5

)))
.

Combining (9) with (6), we derive the following trivial upper bound

for ĥ(Qmin):

ĥ(Qmin) ≪ L2
x ≤

∏

p≤x

N2
p

≤ exp
(
2x+O

(
x exp

(
−c(log x)3/5(log log x)−1/5

)))
.

(10)

Next, we give some better upper bounds for ĥ(Qmin), which auto-
matically provide proofs of our main theorems on the upper bounds.

4. Proofs of upper bounds: Theorems 4, 5 and 6

As mentioned above, to achieve our purpose, it suffices to bound the
canonical height of Qmin, given by (5), that is, ĥ(Qmin).
Here, we also use the notation and some results of Section 3.2, in

particular, the bound (6).
By definition, we get

Lx ≤
∏

p≤x

Np/Tp.

Our approach is to get upper and lower bounds for
∏

p≤x

Np and
∏

p≤x

Tp,

respectively.
We also need the following result from [1, Proposition 5.4] (see [10,

Lemma 14] for a previous result).

Lemma 15. For any real z > 1, we have

#{p : Tp < z} ≪ z1+2/s/ log z.
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4.1. Proof of Theorem 4. Since Γ has rank zero, by the injectivity
of the reduction map restricted to the torsion subgroup, we can see
that Tp = #Γ for any prime p of good reduction.
We also recall the prime number theorem in the following simplified

form

(11) π(x) =
x

log x
+O(x/(log x)2),

which follows immediately from (8).
Now, using (9) and (11) we have

Lx ≤ (#Γ)−π(x)
∏

p≤x

Np

≤ exp

(
x− log(#Γ)

x

log x
+O(x/(log x)2)

)
.

From (6) we conclude that for a sufficiently large x > 0, we have

ĥ(Qmin) ≤ exp

(
2x− 2 log(#Γ)

x

log x
+O(x/(log x)2)

)
,

which completes the proof.

4.2. Proof of Theorem 5. The desired result follows from the fol-
lowing estimate on the canonical height of Qmin.

Lemma 16. If s ≥ 1, then for a sufficiently large x > 0, we have

ĥ(Qmin) ≤ exp

(
4

s+ 2
x+O(x/ log x)

)
.

Proof. For a sufficiently large x, we define

J =

⌊
s

s + 2
log x

⌋
≥ 1 and Zj = xs/(s+2)e−j, j = 0, . . . , J.

Here e is the base of the natural logarithm. Note that 1 ≤ ZJ < e.
Since s ≥ 1, the number of primes p such that Tp = 1 or 2 is finite;

we denote this number by N , which depends only on Γ. Let N0 be the
number of primes p ≤ x with Tp ≥ Z0. Furthermore, for j = 1, . . . , J
we define Nj as the number of primes p ≤ x with Zj−1 > Tp ≥ Zj.
Clearly

N +

J∑

j=0

Nj ≥ π(x).
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So, noticing Z0 = xs/(s+2) we now derive

∏

p≤x

Tp ≥
J∏

j=0

Z
Nj

j ≥ Z
π(x)−N
0

J∏

j=0

e−jNj = Z
π(x)−N
0 exp(−Λ),

where

Λ =

J∑

j=1

jNj.

Recalling the definition of Z0, and using (11), we obtain

(12)
∏

p≤x

Tp ≥ exp

(
s

s+ 2
x− Λ+O(x/ log x)

)
.

To estimate Λ, we note that by Lemma 15, for any positive integer
I ≤ J we have

J∑

j=I

Nj ≤ #{p : Tp < Z0e
−I+1} ≪

(
Z0e

−I+1
)1+2/s

logZ0 − I + 1
.

Thus for I ≤ J/2, noticing J ≤ logZ0 we obtain

(13)
J∑

j=I

Nj ≪
(
Z0e

−I
)1+2/s

logZ0
≪ e−I(1+2/s) x

log x
,

while for any J/2 < I ≤ J we use the bound

(14)
J∑

j=I

Nj ≪
(
Z0e

−I+1
)1+2/s ≪

(√
Z0

)1+2/s

= x1/2.

Hence, via partial summation, combining (13) and (14), we derive

Λ =
J∑

I=1

J∑

j=I

Nj ≪
x

log x

∑

1≤I≤J/2

e−I(1+2/s) + x1/2
∑

J/2<I≤J

1

≪ x

log x
+ Jx1/2 ≪ x

log x
.

This bound on Λ, together with (12), implies

∏

p≤x

Tp ≥ exp

(
s

s+ 2
x+O(x/ log x)

)
.

Therefore using (9), we obtain

Lx ≤
∏

p≤x

Np/Tp ≤ exp

(
2

s+ 2
x+O(x/ log x)

)
.



14 MIN SHA AND IGOR E. SHPARLINSKI

Therefore, the desired result follows from the bound (6). �

4.3. Proof of Theorem 6. We first restate two general results from [1,
Theorems 1.2 and 1.4] in a form convenient for our applications.

Lemma 17. Assume that E is a non-CM curve and s ≥ 19. Under
GRH, for x ≥ 2 we have

#{p ≤ x : Tp < p/(log p)2} ≪ x/(log x)2.

Proof. Since there are only finitely many primes which do not yield
good reductions related to E, we can only consider primes p of good
reduction (that is p ∤ ∆E). Here, we directly use the notation and
follow the arguments in the proof of [1, Theorem 1.2, Part (a)], where
we choose the function f(x) as f(x) = (log x)2. Let B1 and B2 be two
sets defined in [1] such that

#{p ≤ x : p ∤ ∆E , Tp < p/(log p)2} ≤ #B1 +#B2 +O(x/(log x)2),

where O(x/(log x)2) comes from π(x/ log x) = O(x/(log x)2). In par-
ticular, we have

#B1 ≪
x

(log x)(s+2)/s · (s(s+ 2)−1 log x− log log x)

and

#B2 ≪
x

log x · g(x)1−α
+O

(
x1/2+α+(5+α/2)·(2/(s+2)+α)

)
,

where g(x) = f(x/ log x)/3, and the positive real number α is chosen
such that

1

2
+ α +

(
5 +

α

2

)
·
(

2

s+ 2
+ α

)
< 1,

which at least requires that 1/2 + 6α < 1, that is α < 1/12. Note that
such α indeed exists because s ≥ 19.
It is easy to see that

#B1 ≪ x/(log x)2 and #B2 ≪ x/(log x)2,

where the second upper bound comes from 2(1 − α) > 1. Collecting
these estimates, we get the required upper bound. �

Lemma 18. Assume that E is a CM curve and s ≥ 7. Under GRH,
for x ≥ 2 we have

#{p ≤ x : Tp < p/(log p)2} ≪ x/(log x)2.
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Proof. The proof here almost follows the arguments in the proof of [1,
Theorem 1.4] only with a few minor changes, where as in Lemma 17
we again choose the function f(x) as f(x) = (log x)2. For any prime p
of good reduction, let ip = [E(Fp) : Γp]. The following can be derived
from [1]:

#{p ≤ x : p ∤ ∆E , Tp < p/(log p)2} ≤ #B̃1 +#B̃2 +O(x/(log x)2),

where

B̃1 = {p ≤ x : p ∤ ∆E , ip ∈ (xκ, 3x]},
B̃2 = {p ≤ x : p ∤ m∆E , m | ip, for some m ∈ (g(x), xκ]}

with g(x) = f(x/ log x)/3 and some real number κ > 0 to be chosen
later on.
Applying Lemma 15, we have

#B̃1 = #{p ≤ x : p ∤ ∆E , Tp < Np/x
κ}

≤ #{p ≤ x : p ∤ ∆E , Tp < 3x1−κ} ≪ x(1−κ)(s+2)/s

(1− κ) log x
.

For any positive integer m, let ω(m) and d(m) denote, respectively,
the number of distinct prime divisors of m and the number of positive
integer divisors of m.

Now, #B̃2 can be estimated as in [1] as follows:

#B̃2 ≪
x

log x · g(x)1−α
+O

(
x1/2 log x ·

∑

1≤m≤xκ

maω(m)/2d(m)

)
.

where a is the absolute constant of [1, Proposition 6.7]. Now, using [1,
Equation (6.21)] we obtain

#B̃2 ≪
x

log x · g(x)1−α
+O

(
x1/2+2κ(log x)1+β

)

≪ x

(log x)2
+O

(
x1/2+2κ (log x)1+β

)
,

where α is an arbitrary real number in the interval (0, 1) such that
2(1− α) > 1, and β > 2 is some positive integer.
Moreover, we choose the real number κ such that

(1− κ)(s+ 2)/s < 1 and
1

2
+ 2κ < 1.

Thus, we get

(15)
2

s+ 2
< κ <

1

4
.
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Since s ≥ 7, such real number κ indeed exists.
Therefore, for any fixed real number κ satisfying (15) (for example,

κ = 11/45) we obtain

#{p ≤ x : p ∤ ∆E, Tp < p/(log p)2} ≪ x/(log x)2,

which completes the proof of this lemma. �

Finally, the following estimate completes our proof.

Lemma 19. Suppose that either s ≥ 19 if E is a non-CM curve, or
s ≥ 7 if E is a CM curve. Under GRH, for a sufficiently large x > 0,
we have

ĥ(Qmin) ≤ exp (4x(log log x)/ log x+O(x/ log x)) .

Proof. First, we have
∏

p≤x

Tp ≥
∏

p≤x
Tp≥p/(log p)2

p

(log p)2
·

∏

p≤x
Tp<p/(log p)2

Tp

=
∏

p≤x

p

(log p)2

∏

p≤x
Tp<p/(log p)2

Tp(log p)
2

p
.

Using the trivial lower bound Tp ≥ 1 and Lemma 17 and Lemma 18,
we derive ∏

p≤x

Tp ≥
∏

p≤x

p ·
∏

p≤x

(log p)−2 ·
∏

p≤x
Tp<p/(log p)2

(log p)2/p

≥
(
(log x)2

x

)O(x/(log x)2)∏

p≤x

p ·
∏

p≤x

(log p)−2,

where the last inequality follows from Lemma 17 and Lemma 18.
Thus, using (7), we obtain

Lx ≤
∏

p≤x

Np/Tp ≤ exp (O(x/ logx))
∏

p≤x

(log p)2

≤ exp

(
2
x log log x

log x
+O(x/ logx)

)
,

where the last inequality is derived from (11) and the trivial estimate
∑

p≤x

log log p ≤ π(x) log log x.

Therefore, the desired result follows from the bound ĥ(Qmin) ≪ L2
x. �
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5. Proofs of lower bounds: Theorems 7 and 8

5.1. Proof of Theorem 7. Now, assume that Γ is a torsion subgroup
of E(Q), and let Q ∈ E(Q) be an x-pseudolinearly dependent point
of Γ for a sufficiently large x. Let m be the number of primes of bad
reduction. Then, since Q ∈ Γp for any prime p ≤ x of good reduction,
there exists a rational point P ∈ Γ such that at least (π(x) −m)/#Γ
primes p ≤ x of good reduction let the point Q− P become the point
at infinity modulo p. In view of (1), this implies that

h(Q− P ) ≥ 2 log
∏

p≤(π(x)−m)/#Γ

p

≥ 2

#Γ
x/ log x+O(x/(log x)2),

where the last inequality follows from (8) and (11). Note that P is a
torsion point, then using [29, Chapter VIII, Theorem 9.3] we obtain

ĥ(Q) = ĥ(Q) + ĥ(P ) =
1

2

(
ĥ(Q+ P ) + ĥ(Q− P )

)

≥ 1

2
ĥ(Q− P ) ≥ 1

2
h(Q− P ) +O(1)

≥ 1

#Γ
x/ log x+O(x/(log x)2),

(16)

which gives the claimed lower bound for the height of the point Q.

5.2. Proof of Theorem 8. Here, we assume that Γ is a free subgroup
of rank s generated by P1, P2, . . . , Ps. This assumption comes from the
discussions in Section 2.4.
We first prove a result, which can be viewed as an effective version

of Lemma 9 in some sense.

Lemma 20. Let Q ∈ E(Q) \ Γ be a point of infinite order such that
〈Q〉 ∩ Γ = {OE}. Then, there exists a prime p of good reduction satis-
fying

log p ≪ (log ĥ(Q))2s+6 log log ĥ(Q)

such that Q 6∈ Γp. If furthermore assuming GRH, we even have

p ≪ (log ĥ(Q))4s+12(log log ĥ(Q))2.

Proof. Let Q1, Q2, . . . , Qr be a fixed basis of the free part of E(Q).
Since the point Q is of infinite order, it can be represented as

Q = Q0 +m1Q1 +m2Q2 + · · ·+mrQr,
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where Q0 is a torsion point of E(Q), and there is at least one mi 6= 0
(1 ≤ i ≤ r). By [29, Chapter IX, Exercise 9.8 (e)], we immediately
have

ĥ(Q−Q0) ≫ max
1≤i≤r

m2
i .

Noticing that Q0 is a torsion point, as (16) we obtain

(17) ĥ(Q) ≥ 1

2
ĥ(Q−Q0) ≫ max

1≤i≤r
m2

i .

Now, take any mi 6= 0 and let ℓ be the smallest prime such that ℓ ∤ mi.
Since the number ω(m) of distinct prime factors of an integer m ≥ 2
satisfies

ω(m) ≪ logm

log logm

(because we obviously have ω(m)! ≤ m), using the prime number the-
orem we get

ℓ ≪ log |mi|,
which together with (17) yields that

(18) ℓ ≪ log ĥ(Q).

By the choice of ℓ, we see that there is no point R ∈ E(Q) such
that Q = ℓR. This implies that the number field Q(E[ℓ], ℓ−1Q) is not
a trivial extension of Q(E[ℓ]). Consider the number field

L = Q(E[ℓ], ℓ−1Q, ℓ−1P1, . . . , ℓ
−1Ps),

and set K = Q(E[ℓ]). By the discussions in Section 2.4, we can choose
a conjugation class C in the Galois group Gal(L/Q) such that each of
its corresponding primes p is unramified in L/Q, p is a prime of good
reduction, every σ ∈ C is the identity map when restricted to K, and
especially each equation ℓX = Pi has solution in E(Fp) for 1 ≤ i ≤ s
but the equation ℓX = Q has no such solution, which implies that

Q 6∈ Γp.

By Lemma 11, we can choose such a prime p such that

(19) log p ≪ log |DL|;
if under GRH, we even have

(20) p ≪ (log |DL|)2.
From Lemma 10 and noticing that only the primes dividing ℓ∆E ramify
in L, we get

(21) log |DL| ≤ n logn + n log(ℓ∆E) ≪ n log n+ n log ℓ,
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where n = [L : Q]. Using (2), we obtain

(22) n ≤ ℓ2s+6.

Combining (18), (19), (20), (21) with (22), we unconditionally have

log p ≪ (log ĥ(Q))2s+6 log log ĥ(Q),

and conditionally we have

p ≪ (log ĥ(Q))4s+12(log log ĥ(Q))2,

which concludes the proof. �

Now, we are ready to prove Theorem 8.
For a sufficiently large x, by Proposition 12, any x-pseudolinearly

dependent pointQ of Γ satisfies 〈Q〉∩Γ = {OE}. Then from Lemma 20,
there is an unconditional prime p of good reduction satisfying

log p ≪ (log ĥ(Q))2s+6 log log ĥ(Q)

such that Q 6∈ Γp. Since x < p by definition, we obtain

log x ≪ (log ĥ(Q))2s+6 log log ĥ(Q),

which implies that

ĥ(Q) ≥ exp
(
(log x)1/(2s+6)+o(1)

)
.

Similarly, if assuming GRH, we can obtain

ĥ(Q) ≥ exp(x1/(4s+12)+o(1)),

which completes the proof.

6. Comments

We remark that the upper bound of Theorem 4 is only slightly bet-
ter than the trivial bound (10), although the ratio between the two
estimates tends to zero whenever #Γ > 1.
In Section 5, we get some partial results on the lower bound for the

height of x-pseudolinearly dependent points. In fact, the height of such
points certainly tends to infinity as x → +∞.
Indeed, let E be an elliptic curve over Q of rank r ≥ 1, and let Γ

be a subgroup of E(Q) with rank s < r. We have known that for
any sufficiently large x, there exist infinitely many x-pseudolinearly
dependent points of Γ. For any x > 0, if such points exist, as before we
can choose a point, denoted by Qx, with smallest Weil height among
all these points; otherwise if there are no such points, we let Qx = OE.
Thus, we get a subset S = {Qx : x > 0} of E(Q), and for any x < y we
have h(Qx) ≤ h(Qy). By Lemma 9, we know that for any fixed point
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Q ∈ E(Q), it can not be an x-pseudolinearly dependent point of Γ for
any sufficiently large x. So, S is an infinite set. Since it is well-known
that there are only finitely many rational points of E(Q) with bounded
height, we obtain

lim
x→+∞

h(Qx) = +∞,

which implies that limx→+∞ ĥ(Qx) = +∞. This immediately implies

that for the point Qmin constructed in Section 3.2, its height ĥ(Qmin)
also tends to infinity as x → +∞. Moreover, let pn denote the nth
prime, that is p1 = 2, p2 = 3, p3 = 5, . . .. For any n ≥ 1, denote
by Tn the set of pn-pseudolinearly dependent points of Γ. Obviously,
Tn+1 ⊆ Tn and h(Qpn+1

) ≥ h(Qpn) for any n ≥ 1. For any sufficiently
large n, we conjecture that Tn+1 ( Tn. If furthermore one could prove
that h(Qpn+1

) > h(Qpn) for any sufficiently large n, this would lead to
a lower bound of the form

h(Qx) ≥ log x+O(log log x),

as the values of h(Qx) are logarithms of integer numbers and there are
about x/ log x primes not greater than x.
In Lemma 20, if we choose Γ as a torsion subgroup, we can also get

a similar unconditional upper bound. Indeed, for a prime p of good
reduction, suppose that Q ∈ Γp. Then, Q−P ≡ OE modulo p for some
P ∈ Γ. According to (1), we have p ≤ exp(0.5h(Q − P )). Since P is

a torsion point, as (16) we get p ≤ exp(ĥ(Q) + O(1)). Thus, we can
choose a prime p of good reduction satisfying

p ≤ exp(ĥ(Q) +O(1))

such that Q 6∈ Γp.
Finally, we want to remark that the definition of pseudolinearly de-

pendent point can be generalized to many settings where there exist
reduction maps modulo “primes” (which can be prime numbers, prime
ideals, monic irreducible polynomials, and so on), such as number fields,
function fields, curves of higher genus, Abelian varieties, and so on.
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